Steering and Suspension

“Suspension,” when discussing cars, refers to the use of front and rear springs to suspend a vehicle’s “sprung” weight. The springs used on today’s cars and trucks are constructed in a variety of types, shapes, sizes, rates, and capacities. Types include leaf springs, coil springs, air springs, and torsion bars. These are used in sets of four for each vehicle, or they may be paired off in various combinations and are attached by several different mounting techniques. The suspension system also includes shocks and/or struts, and sway bars. Back in the earliest days of automobile development, when most of the car’s weight (including the engine) was on the rear axle, steering was a simple matter of turning a tiller that pivoted the entire front axle. When the engine was moved to the front of the car, complex steering systems had to evolve. The modern automobile has come a long way since the days when “being self-propelled” was enough to satisfy the car owner. Improvements in suspension and steering, increased strength and durability of components, and advances in tire design and construction have made large contributions to riding comfort and to safe driving.

Cadillac allegedly produced the first American car to use a steering wheel instead of a tiller.

Two of the most common steering mechanisms are the “rack and pinion” and the standard (or recirculating-ball) systems, that can be either manual or assisted by power. The rack and pinion was designed for sports cars and requires too much driver muscle at low speeds to be very useful in larger, heavier cars. However, power steering makes a heavy car respond easily to the steering wheel, whether at highway speeds or inching into a narrow parking place, and it is normal equipment for large automobiles.

The suspension system has two basic functions, to keep the car’s wheels in firm contact with the road and to provide a comfortable ride for the passengers. A lot of the system’s work is done by the springs. Under normal conditions, the springs support the body of the car evenly by compressing and rebounding with every up-and-down movement. This up-and-down movement, however, causes bouncing and swaying after each bump and is very uncomfortable to the passenger. These undesirable effects are reduced by the shock absorbers.